رفتن به مطلب
مرورگر پیشنهادی آرساکیا گیم مرورگر های تحت موتور کرومیوم می‌باشد، برای دانلود روی مرورگر انتخابی خود کلیک کنید
Google Chrome Microsoft Edge Ungoogled Chromium Brave Opera GX Opera

ترانزیستور پایه و اساس کامپیوتر


iNSANE

به نظرتون اگه ترانزیستور اختراع نمی شد تکنولوژی الان چه جوری بود   

11 کاربر تاکنون رای داده است

  1. 1. به نظرتون اگه ترانزیستور اختراع نمی شد تکنولوژی الان چه جوری بود

    • نابود تر از دوران لامپ خلاء بود
    • بهتر و بیشتر از دوران حال رشد کرده بود


ارسال‌های توصیه شده

مفهوم ترانزیستور

 

ترانزیستور[۱] مهم‌ترین قطعۀ مداری در الکترونیک است و برای تقویت یا قطع و وصل سیگنال‌ها به کار می‌رود. ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه‌رسانایی مانند سیلیسیم و ژرمانیم ساخته می‌شود. یک ترانزیستور در ساختار خود دارای پیوندهای نوع N و نوع P است.

ترانزیستورها به دو دسته کلی تقسیم می‌شوند: ترانزیستورهای اتصال دوقطبی (BJT) و ترانزیستورهای اثر میدانی (FET). اِعمال جریان در BJTها، و ولتاژ در FETها بین ورودی و ترمینال مشترک، رسانایی بین خروجی و ترمینال مشترک را افزایش می‌دهد، از این‌رو سبب کنترل شدت جریان بین آن‌ها می‌شود. مشخصات ترانزیستورها به نوع آن‌ها بستگی دارد. شکل ظاهری ترانزیستورها با توجه به توان و فرکانس کاری‌شان متفاوت است.

در مدارهای آنالوگ، ترانزیستورها در تقویت‌کننده‌ها استفاده می‌شوند (تقویت سیگنال‌هایی مانند صوت، امواج رادیویی، ...) و نیز منابع تغذیه تثبیت‌شده خطی و غیرخطی (منبع تغذیه سوییچینگ). در مدارهای دیجیتال از ترانزیستورها به عنوان سوییچ (کلید) الکترونیکی استفاده می‌شود، اگر چه به ندرت به صورت یک قطعۀ جداگانه، بلکه به صورت به‌هم‌پیوسته در مدارهای مجتمع یک‌پارچه به کار می‌روند. مدارهای دیجیتال شامل گیت‌های منطقی (logic gates)، حافظه با دسترسی تصادفی (RAM)، ریزپردازنده‌ها و پردازنده‌های سیگنال دیجیتال (DSP) هستند.

ترانزیستور BJT، سه‌پایه دارد: بِیس (پایه Base)، کُلِکتور یا کالِکتِر (جمع‌کننده Collector) و اِمیتر (منتشرکننده Emitter).

 

ساختمان ترانزیستور اتصال دو قطبی

 

ترانزیستورهای اتصال دوقطبی BJT از اتصال سه لایه بلور نیمه‌هادی تشکیل می‌شوند. لایهٔ وسطی بیس یا پایه (به انگلیسی: Base)، و دو لایهٔ جانبی، یکی امیتر (به انگلیسی: Emitter) و دیگری کلکتور (به انگلیسی: Collector) نام دارد. نوع بلور بیس، با نوع بلورهای امیتر و کلکتور متفاوت است. معمولاً میزان ناخالصی در امیتر بیشتر از دو لایهٔ دیگر و همچنین عرض لایه بیس کمتر و عرض لایهٔ کلکتور بیشتر از لایه‌های دیگر است.[۲]

در یک ترانزیستور دو قطبی، لایهٔ امیتر یا گسیلنده بیشترین مقدار ناخالصی را دارد؛ که الکترون‌ها از امیتر به‌سوی لایهٔ کلکتور که ناخالصی کمتری دارد، گسیل داده می‌شوند.[۳]

 

اهمیت

 

ترانزیستور به عنوان یکی از بزرگترین اختراعات در تاریخ نوین مطرح شده‌است و در رتبه‌بندی از لحاظ اهمیت، در کنار ماشین چاپ، خودرو و ارتباطات الکترونیکی و الکتریکی قرار دارد. ترانزیستور عنصر فعال بنیادی در الکترونیک مدرن است. اهمیت ترانزیستور در جامعهٔ امروز متکی به قابلیت تولید انبوه آن است که از یک فرایند ساخت کاملاً اتوماتیک که قیمت تمام شده هر ترانزیستور در آن بسیار ناچیز است، استفاده می‌کند. اگرچه ترانزیستورها هنوز به صورت جداگانه نیز استفاده می‌شوند ولی بیشتر در مدارهای مجتمع (اغلب به صورت مختصر IC و همچنین میکرو چیپ یا به صورت ساده چیپ ساخته و نامیده می‌شوند) همراه با دیودها، مقاومت‌ها، خازن‌ها و دیگر قطعات الکترونیکی برای ساخت یک مدار کامل الکترونیک به کار می‌روند. مثلاً یک گیت منطقی حدود بیست ترانزیستور دارد یا یک ریزپردازنده پیشرفته سال ۲۰۰۶ از بیش از ۷٫۱ میلیون ترانزیستور ماسفت ساخته شده‌است.

قیمت کم، انعطاف‌پذیری و اطمینان، از ترانزیستور یک قطعهٔ همه‌کاره ساخته‌است. مدارهای ترانزیستوری به خوبی جایگزین دستگاه‌های کنترل ادوات و ماشین‌ها شده‌اند. استفاده از یک میکروکنترلر استاندارد و نوشتن یک برنامه رایانه‌ای که عمل کنترل را انجام می‌دهد اغلب ارزان‌تر و مؤثرتر از طراحی مکانیکی معادل آن است.

به سبب قیمت کم ترانزیستورها، گرایش برای دیجیتال کردن انواع اطلاعات نیز بیشتر شده‌است زیرا رایانه‌های دیجیتالی توانایی خوبی در جستجوی سریع، دسته‌بندی و پردازش اطلاعات دیجیتال دارند. در نتیجه امروزه داده‌های رسانه‌ای بیشتری به دیجیتال تبدیل می‌شوند و پس از پردازش رایانه به صورت آنالوگ در اختیار کاربر قرار می‌گیرند. تلویزیون، رادیو و روزنامه‌ها از جمله چیزهایی هستند که بیشتر تحت تأثیر این انقلاب دیجیتالی قرار داشته‌اند.

 

 

مزایای ترانزیستورها بر لامپ‌های خلاء

 

قبل از گسترش ترانزیستورها، لامپ‌های خلاء قطعات فعال اصلی تجهیزات الکترونیک بودند. مزایای اصلی که به ترانزیستورها اجازه دادند در بیشتر کاربردها جایگزین لامپ‌های خلاء شوند در زیر آمده‌است:

اندازه به مراتب کوچک‌تر

تولید کاملاً اتوماتیک

هزینه کمتر (در تولید انبوه)

ولتاژ کاری پایین‌تر (اما لامپ‌های خلاء در ولتاژهای بالاتر می‌توانند کار کنند)

نیاز نداشتن به گرم شدن اولیه (بیشتر لامپ‌های خلاء به ۱۰ تا ۶۰ ثانیه زمان برای عملکرد صحیح نیاز دارند)

تلفات توان کمتر (توان گرمایی، ولتاژ اشباع خیلی پایین)

قابلیت اطمینان بالاتر و سختی فیزیکی بیشتر (اگرچه لامپ‌های خلاء از نظر الکتریکی مقاوم ترند. همچنین لامپ خلاء در برابر پالس‌های الکترومغناطیسی هسته‌ای (NEMP) و تخلیه الکترواستاتیکی (ESD) مقاوم ترند)

عمر خیلی بیشتر (قطب منفی لامپ خلاء سرانجام از بین می‌رود و نیز خلاء آن می‌تواند از بین برود)

فراهم آوردن دستگاه‌های مکمل (امکان ساختن مدارات مکمل متقارن: لامپ خلاء قطبی معادل نوع مثبت BJTها و نوع مثبت FETها در دسترس نیست)

قابلیت کنترل جریان‌های زیاد (ترانزیستورهای قدرت برای کنترل صدها آمپر یا بیشتر در دسترسند، لامپ‌های خلاء برای کنترل حتی یک آمپر بسیار بزرگ و هزینه برند)

میکروفونیک بسیار کمتر (لرزش می‌تواند بر خصوصیات لامپ خلاء تأثیر بگذارد).

 

تاریخچه

 

اولین حق ثبت اختراع ترانزیستور اثر میدان در سال ۱۹۲۸ در آلمان توسط فیزیک‌دانی به نام یولیوس ادگار لیلینفلد ثبت شد، اما او هیچ مقاله‌ای دربارهٔ قطعه‌اش چاپ نکرد و این ثبت اختراع از طرف صنعت نادیده گرفته شد. در سال ۱۹۳۴ فیزیکدان آلمانی دکتر اسکار هایل ترانزیستور اثر میدان دیگری را به ثبت رساند. هیچ مدرک مستقیمی وجود ندارد که این قطعه ساخته شده باشد، اما بعداً کارهایی در دهه ۱۹۹۰ نشان داد که یکی از طرح‌های لیلینفلد کار کرده و بهره تقویت کنندگی قابل توجهی داشته‌است. اوراق قانونی آزمایشگاه‌های ثبت اختراع بل نشان می‌دهد که ویلیام شاکلی و جرالد پیرسن یک نسخه قابل استفاده از اختراع لیلینفلد ساخته‌اند، در حالی که آن‌ها هیچگاه این را در تحقیقات و مقالات خود ذکر نکردند.

در ۲۳ دسامبر ۱۹۴۷، ویلیام شاکلی، جان باردین و والتر براتین موفق به ساخت اولین ترانزیستور اتصال نقطه‌ای در آزمایشگاه‌های بل شدند. این کار با تلاش‌های زمان جنگ برای تولید دیودهای میکسر کریستال ژرمانیم خالص ادامه یافت، این دیودها در واحدهای رادار به عنوان میکسر فرکانس در گیرنده‌های میکروموج استفاده می‌شد. یک پروژه دیودهای ژرمانیم در دانشگاه پردو موفق شد کریستال‌های نیمه‌هادی ژرمانیم را با کیفیت خوب که در آزمایشگاه‌های بل استفاده می‌شد تولید کند. سرعت سوئیچ تکنولوژی لامپی اولیه برای این کار کافی نبود، همین تیم بل را سوق داد تا از دیودهای حالت جامد به جای آن استفاده کنند. آن‌ها با دانشی که در دست داشتند شروع به طراحی سه قطبی نیمه‌هادی کردند، اما دریافتند که کار ساده‌ای نیست. جان باردین سرانجام یک شاخه جدید فیزیک سطحی را برای محاسبه رفتار عجیبی که دیده بودند ایجاد کرد و سرانجام براتین و باردین موفق به ساخت یک قطعه کاری شدند.

از چپ به راست: جان باردین، ویلیام شاکلی و والتر برتن در آزمایشگاه‌های بل، ۱۹۴۸ میلادی. این عکس یکی از عکس‌های تبلیغاتی است که در زمان اعلام عمومی اختراع ترانزیستور، توسط آزمایشگاه‌های بل منتشر شده‌است. اگرچه ماجرای اختراع ترانزیستور توسط این سه تن بسیار بحث‌برانگیز بود و آن‌ها اختلافاتی بر سر اسناد ثبت اختراع داشتند، اما آزمایشگاه بل در عکس‌های تبلیغاتی‌ هر سه این افراد را در اختراع ترانزیستور سهیم می‌دانست.[۴][۵][۶]

آزمایشگاه‌های بل به یک اسم برای اختراع جدید نیاز داشتند: «سه قطبی نیمه‌هادی»، «سه قطبی جامد»، «سه قطبی اجزاء سطحی»، «سه قطبی کریستال» و «لاتاتورن» که همه مطرح شده بودند، اما «ترانزیستور» که توسط جان رابینسون پیرس پیشنهاد شده بود، برنده یک قرعه کشی داخلی شد. اساس این اسم در یاداشت فنی بعدی شرکت رای‌گیری شد:

"ترانزیستور، یک ترکیب اختصاری از کلمات «ترانسفر» (انتقال) و «رزیستور» (مقاومت) است. این قطعه منطقاً متعلق به خانواده مقاومت متغیر است که "امپدانس انتقالی" و نیز "بهره" دارد؛ بنابراین این اسم یک ترکیب توصیفی است. -آزمایشگاه‌های تلفن بل- یاداشت فنی (۲۸ می۱۹۴۸)"

در آن زمان تصور می‌شد که این قطعه مثل دو لامپ خلاء است. لامپ‌های خلاء هدایت انتقالی دارند بنابراین ترانزیستور هدایت انتقالی دارد؛ و این اسم می‌بایست متناسب با نام دیگر قطعات مثل وریستور، ترمیستور باشد؛ و نام ترانزیستور پیشنهاد شد.

آزمایشگاه‌های بل فوراً ترانزیستور تک اتصالی را جزء تولیدات انحصاری شرکت وسترن الکتریک، شهر آلنتون در ایالت پنسیلوانیا قرار داد. نخستین ترانزیستورها برای گیرنده‌های رادیو AM ساخته و به نمایش گذاشته شدند اگر چه در واقع فقط در سطح آزمایشگاهی بودند. به هر حال در سال ۱۹۵۰ شاکلی یک نوع کاملاً متفاوت ترانزیستور را ارائه داد که به ترانزیستور اتصال دوقطبی معروف شد. اگرچه اصول کار آن با ترانزیستور تک اتصالی کاملاً فرق می‌کند، این قطعه‌ای است که امروزه به عنوان ترانزیستور شناخته می‌شود. پروانه تولید آن نیز به تعدادی از شرکت‌های الکترونیک شامل تگزاس اینسترومنتس که تعداد محدودی رادیو ترانزیستوری تولید می‌کرد داده شد. ترانزیستورهای اولیه از نظر شیمیایی ناپایدار بودند و فقط برای کاربردهای فرکانس و توان پایین مناسب بودند، اما همینکه طراحی ترانزیستور توسعه یافت این مشکلات نیز کم‌کم رفع شدند.

هنگامی که ماسارو ایبوکا، مؤسس شرکت ژاپنی سونی از آمریکا دیدن می‌کرد آزمایشگاه‌های بل مجوز ساخت و نیز دستورالعمل‌های ساخت ترانزیستور را منتشر کرده بود. ایبوکا پروانه تولید را از وزارت دارایی ژاپن گرفت و در سال ۱۹۵۵ رادیوی جیبی خود را با مارک سونی معرفی کرد. بعد از دو دهه ترانزیستورها به تدریج جای لامپ‌های خلاء را در بسیاری از کاربردها گرفتند و بعدها امکان تولید مدارات مجتمع و دستگاه‌های جدیدی مانند رایانه‌های شخصی را فراهم آوردند.

از ویلیام شاکلی، جان باردین و والتر براتِین بخاطر تحقیقاتشان در مورد نیمه‌هادی‌ها و کشف اثر ترانزیستور با جایزه نوبل فیزیک قدردانی شد.

 

منبع ویکیپدیا

I used to Rule the world 

Seas would rise when I gave the word
Now in the morning, I sleep alone
Sweep the streets I used to own

 

http://agsa.arsacia.ir/players/bars/iNSaNe.png

لینک به دیدگاه
به اشتراک گذاری در سایت های دیگر

  • 4 ماه بعد...

ترانزیستور اگه نبود الان ما بجای یه لپتاپ یا مانیتور کوچیک باید به اندازه یه خونه کامپیوتر یجا جا میکردیم??

باید زیاد مطالعه کنیم تا متوجه شویم هیچ نمی دانیم?️‍♂️

لینک به دیدگاه
به اشتراک گذاری در سایت های دیگر

  • 5 ماه بعد...
  • 4 ماه بعد...
در در ۱۳۹۸/۱۱/۴ در 20:41، iNSaNe گفته است:

مفهوم ترانزیستور

 

ترانزیستور[۱] مهم‌ترین قطعۀ مداری در الکترونیک است و برای تقویت یا قطع و وصل سیگنال‌ها به کار می‌رود. ترانزیستور یکی از ادوات حالت جامد است که از مواد نیمه‌رسانایی مانند سیلیسیم و ژرمانیم ساخته می‌شود. یک ترانزیستور در ساختار خود دارای پیوندهای نوع N و نوع P است.

ترانزیستورها به دو دسته کلی تقسیم می‌شوند: ترانزیستورهای اتصال دوقطبی (BJT) و ترانزیستورهای اثر میدانی (FET). اِعمال جریان در BJTها، و ولتاژ در FETها بین ورودی و ترمینال مشترک، رسانایی بین خروجی و ترمینال مشترک را افزایش می‌دهد، از این‌رو سبب کنترل شدت جریان بین آن‌ها می‌شود. مشخصات ترانزیستورها به نوع آن‌ها بستگی دارد. شکل ظاهری ترانزیستورها با توجه به توان و فرکانس کاری‌شان متفاوت است.

در مدارهای آنالوگ، ترانزیستورها در تقویت‌کننده‌ها استفاده می‌شوند (تقویت سیگنال‌هایی مانند صوت، امواج رادیویی، ...) و نیز منابع تغذیه تثبیت‌شده خطی و غیرخطی (منبع تغذیه سوییچینگ). در مدارهای دیجیتال از ترانزیستورها به عنوان سوییچ (کلید) الکترونیکی استفاده می‌شود، اگر چه به ندرت به صورت یک قطعۀ جداگانه، بلکه به صورت به‌هم‌پیوسته در مدارهای مجتمع یک‌پارچه به کار می‌روند. مدارهای دیجیتال شامل گیت‌های منطقی (logic gates)، حافظه با دسترسی تصادفی (RAM)، ریزپردازنده‌ها و پردازنده‌های سیگنال دیجیتال (DSP) هستند.

ترانزیستور BJT، سه‌پایه دارد: بِیس (پایه Base)، کُلِکتور یا کالِکتِر (جمع‌کننده Collector) و اِمیتر (منتشرکننده Emitter).

 

ساختمان ترانزیستور اتصال دو قطبی

 

ترانزیستورهای اتصال دوقطبی BJT از اتصال سه لایه بلور نیمه‌هادی تشکیل می‌شوند. لایهٔ وسطی بیس یا پایه (به انگلیسی: Base)، و دو لایهٔ جانبی، یکی امیتر (به انگلیسی: Emitter) و دیگری کلکتور (به انگلیسی: Collector) نام دارد. نوع بلور بیس، با نوع بلورهای امیتر و کلکتور متفاوت است. معمولاً میزان ناخالصی در امیتر بیشتر از دو لایهٔ دیگر و همچنین عرض لایه بیس کمتر و عرض لایهٔ کلکتور بیشتر از لایه‌های دیگر است.[۲]

در یک ترانزیستور دو قطبی، لایهٔ امیتر یا گسیلنده بیشترین مقدار ناخالصی را دارد؛ که الکترون‌ها از امیتر به‌سوی لایهٔ کلکتور که ناخالصی کمتری دارد، گسیل داده می‌شوند.[۳]

 

اهمیت

 

ترانزیستور به عنوان یکی از بزرگترین اختراعات در تاریخ نوین مطرح شده‌است و در رتبه‌بندی از لحاظ اهمیت، در کنار ماشین چاپ، خودرو و ارتباطات الکترونیکی و الکتریکی قرار دارد. ترانزیستور عنصر فعال بنیادی در الکترونیک مدرن است. اهمیت ترانزیستور در جامعهٔ امروز متکی به قابلیت تولید انبوه آن است که از یک فرایند ساخت کاملاً اتوماتیک که قیمت تمام شده هر ترانزیستور در آن بسیار ناچیز است، استفاده می‌کند. اگرچه ترانزیستورها هنوز به صورت جداگانه نیز استفاده می‌شوند ولی بیشتر در مدارهای مجتمع (اغلب به صورت مختصر IC و همچنین میکرو چیپ یا به صورت ساده چیپ ساخته و نامیده می‌شوند) همراه با دیودها، مقاومت‌ها، خازن‌ها و دیگر قطعات الکترونیکی برای ساخت یک مدار کامل الکترونیک به کار می‌روند. مثلاً یک گیت منطقی حدود بیست ترانزیستور دارد یا یک ریزپردازنده پیشرفته سال ۲۰۰۶ از بیش از ۷٫۱ میلیون ترانزیستور ماسفت ساخته شده‌است.

قیمت کم، انعطاف‌پذیری و اطمینان، از ترانزیستور یک قطعهٔ همه‌کاره ساخته‌است. مدارهای ترانزیستوری به خوبی جایگزین دستگاه‌های کنترل ادوات و ماشین‌ها شده‌اند. استفاده از یک میکروکنترلر استاندارد و نوشتن یک برنامه رایانه‌ای که عمل کنترل را انجام می‌دهد اغلب ارزان‌تر و مؤثرتر از طراحی مکانیکی معادل آن است.

به سبب قیمت کم ترانزیستورها، گرایش برای دیجیتال کردن انواع اطلاعات نیز بیشتر شده‌است زیرا رایانه‌های دیجیتالی توانایی خوبی در جستجوی سریع، دسته‌بندی و پردازش اطلاعات دیجیتال دارند. در نتیجه امروزه داده‌های رسانه‌ای بیشتری به دیجیتال تبدیل می‌شوند و پس از پردازش رایانه به صورت آنالوگ در اختیار کاربر قرار می‌گیرند. تلویزیون، رادیو و روزنامه‌ها از جمله چیزهایی هستند که بیشتر تحت تأثیر این انقلاب دیجیتالی قرار داشته‌اند.

 

 

مزایای ترانزیستورها بر لامپ‌های خلاء

 

قبل از گسترش ترانزیستورها، لامپ‌های خلاء قطعات فعال اصلی تجهیزات الکترونیک بودند. مزایای اصلی که به ترانزیستورها اجازه دادند در بیشتر کاربردها جایگزین لامپ‌های خلاء شوند در زیر آمده‌است:

اندازه به مراتب کوچک‌تر

تولید کاملاً اتوماتیک

هزینه کمتر (در تولید انبوه)

ولتاژ کاری پایین‌تر (اما لامپ‌های خلاء در ولتاژهای بالاتر می‌توانند کار کنند)

نیاز نداشتن به گرم شدن اولیه (بیشتر لامپ‌های خلاء به ۱۰ تا ۶۰ ثانیه زمان برای عملکرد صحیح نیاز دارند)

تلفات توان کمتر (توان گرمایی، ولتاژ اشباع خیلی پایین)

قابلیت اطمینان بالاتر و سختی فیزیکی بیشتر (اگرچه لامپ‌های خلاء از نظر الکتریکی مقاوم ترند. همچنین لامپ خلاء در برابر پالس‌های الکترومغناطیسی هسته‌ای (NEMP) و تخلیه الکترواستاتیکی (ESD) مقاوم ترند)

عمر خیلی بیشتر (قطب منفی لامپ خلاء سرانجام از بین می‌رود و نیز خلاء آن می‌تواند از بین برود)

فراهم آوردن دستگاه‌های مکمل (امکان ساختن مدارات مکمل متقارن: لامپ خلاء قطبی معادل نوع مثبت BJTها و نوع مثبت FETها در دسترس نیست)

قابلیت کنترل جریان‌های زیاد (ترانزیستورهای قدرت برای کنترل صدها آمپر یا بیشتر در دسترسند، لامپ‌های خلاء برای کنترل حتی یک آمپر بسیار بزرگ و هزینه برند)

میکروفونیک بسیار کمتر (لرزش می‌تواند بر خصوصیات لامپ خلاء تأثیر بگذارد).

 

تاریخچه

 

اولین حق ثبت اختراع ترانزیستور اثر میدان در سال ۱۹۲۸ در آلمان توسط فیزیک‌دانی به نام یولیوس ادگار لیلینفلد ثبت شد، اما او هیچ مقاله‌ای دربارهٔ قطعه‌اش چاپ نکرد و این ثبت اختراع از طرف صنعت نادیده گرفته شد. در سال ۱۹۳۴ فیزیکدان آلمانی دکتر اسکار هایل ترانزیستور اثر میدان دیگری را به ثبت رساند. هیچ مدرک مستقیمی وجود ندارد که این قطعه ساخته شده باشد، اما بعداً کارهایی در دهه ۱۹۹۰ نشان داد که یکی از طرح‌های لیلینفلد کار کرده و بهره تقویت کنندگی قابل توجهی داشته‌است. اوراق قانونی آزمایشگاه‌های ثبت اختراع بل نشان می‌دهد که ویلیام شاکلی و جرالد پیرسن یک نسخه قابل استفاده از اختراع لیلینفلد ساخته‌اند، در حالی که آن‌ها هیچگاه این را در تحقیقات و مقالات خود ذکر نکردند.

در ۲۳ دسامبر ۱۹۴۷، ویلیام شاکلی، جان باردین و والتر براتین موفق به ساخت اولین ترانزیستور اتصال نقطه‌ای در آزمایشگاه‌های بل شدند. این کار با تلاش‌های زمان جنگ برای تولید دیودهای میکسر کریستال ژرمانیم خالص ادامه یافت، این دیودها در واحدهای رادار به عنوان میکسر فرکانس در گیرنده‌های میکروموج استفاده می‌شد. یک پروژه دیودهای ژرمانیم در دانشگاه پردو موفق شد کریستال‌های نیمه‌هادی ژرمانیم را با کیفیت خوب که در آزمایشگاه‌های بل استفاده می‌شد تولید کند. سرعت سوئیچ تکنولوژی لامپی اولیه برای این کار کافی نبود، همین تیم بل را سوق داد تا از دیودهای حالت جامد به جای آن استفاده کنند. آن‌ها با دانشی که در دست داشتند شروع به طراحی سه قطبی نیمه‌هادی کردند، اما دریافتند که کار ساده‌ای نیست. جان باردین سرانجام یک شاخه جدید فیزیک سطحی را برای محاسبه رفتار عجیبی که دیده بودند ایجاد کرد و سرانجام براتین و باردین موفق به ساخت یک قطعه کاری شدند.

از چپ به راست: جان باردین، ویلیام شاکلی و والتر برتن در آزمایشگاه‌های بل، ۱۹۴۸ میلادی. این عکس یکی از عکس‌های تبلیغاتی است که در زمان اعلام عمومی اختراع ترانزیستور، توسط آزمایشگاه‌های بل منتشر شده‌است. اگرچه ماجرای اختراع ترانزیستور توسط این سه تن بسیار بحث‌برانگیز بود و آن‌ها اختلافاتی بر سر اسناد ثبت اختراع داشتند، اما آزمایشگاه بل در عکس‌های تبلیغاتی‌ هر سه این افراد را در اختراع ترانزیستور سهیم می‌دانست.[۴][۵][۶]

آزمایشگاه‌های بل به یک اسم برای اختراع جدید نیاز داشتند: «سه قطبی نیمه‌هادی»، «سه قطبی جامد»، «سه قطبی اجزاء سطحی»، «سه قطبی کریستال» و «لاتاتورن» که همه مطرح شده بودند، اما «ترانزیستور» که توسط جان رابینسون پیرس پیشنهاد شده بود، برنده یک قرعه کشی داخلی شد. اساس این اسم در یاداشت فنی بعدی شرکت رای‌گیری شد:

"ترانزیستور، یک ترکیب اختصاری از کلمات «ترانسفر» (انتقال) و «رزیستور» (مقاومت) است. این قطعه منطقاً متعلق به خانواده مقاومت متغیر است که "امپدانس انتقالی" و نیز "بهره" دارد؛ بنابراین این اسم یک ترکیب توصیفی است. -آزمایشگاه‌های تلفن بل- یاداشت فنی (۲۸ می۱۹۴۸)"

در آن زمان تصور می‌شد که این قطعه مثل دو لامپ خلاء است. لامپ‌های خلاء هدایت انتقالی دارند بنابراین ترانزیستور هدایت انتقالی دارد؛ و این اسم می‌بایست متناسب با نام دیگر قطعات مثل وریستور، ترمیستور باشد؛ و نام ترانزیستور پیشنهاد شد.

آزمایشگاه‌های بل فوراً ترانزیستور تک اتصالی را جزء تولیدات انحصاری شرکت وسترن الکتریک، شهر آلنتون در ایالت پنسیلوانیا قرار داد. نخستین ترانزیستورها برای گیرنده‌های رادیو AM ساخته و به نمایش گذاشته شدند اگر چه در واقع فقط در سطح آزمایشگاهی بودند. به هر حال در سال ۱۹۵۰ شاکلی یک نوع کاملاً متفاوت ترانزیستور را ارائه داد که به ترانزیستور اتصال دوقطبی معروف شد. اگرچه اصول کار آن با ترانزیستور تک اتصالی کاملاً فرق می‌کند، این قطعه‌ای است که امروزه به عنوان ترانزیستور شناخته می‌شود. پروانه تولید آن نیز به تعدادی از شرکت‌های الکترونیک شامل تگزاس اینسترومنتس که تعداد محدودی رادیو ترانزیستوری تولید می‌کرد داده شد. ترانزیستورهای اولیه از نظر شیمیایی ناپایدار بودند و فقط برای کاربردهای فرکانس و توان پایین مناسب بودند، اما همینکه طراحی ترانزیستور توسعه یافت این مشکلات نیز کم‌کم رفع شدند.

هنگامی که ماسارو ایبوکا، مؤسس شرکت ژاپنی سونی از آمریکا دیدن می‌کرد آزمایشگاه‌های بل مجوز ساخت و نیز دستورالعمل‌های ساخت ترانزیستور را منتشر کرده بود. ایبوکا پروانه تولید را از وزارت دارایی ژاپن گرفت و در سال ۱۹۵۵ رادیوی جیبی خود را با مارک سونی معرفی کرد. بعد از دو دهه ترانزیستورها به تدریج جای لامپ‌های خلاء را در بسیاری از کاربردها گرفتند و بعدها امکان تولید مدارات مجتمع و دستگاه‌های جدیدی مانند رایانه‌های شخصی را فراهم آوردند.

از ویلیام شاکلی، جان باردین و والتر براتِین بخاطر تحقیقاتشان در مورد نیمه‌هادی‌ها و کشف اثر ترانزیستور با جایزه نوبل فیزیک قدردانی شد.

 

منبع ویکیپدیا

بسيار جذاب و عالي

━━━━━━━━━━━━━━━━━━━๑۩۞۩๑━━━━━━━━━━━━━━━━━━━━

Seyed.png

━━━━━━━━━━━━━━━━━━━๑۩۞۩๑━━━━━━━━━━━━━━━━━━━━

 

لینک به دیدگاه
به اشتراک گذاری در سایت های دیگر

  • 6 ماه بعد...
در 56 دقیقه قبل، Hazzard گفته است:

ما که نخوندیم ولی اینطور که اینا میگن معلومه خوبه ایول ?

بحله

!!? ⃟▬▬▭••????? ???? ?? ??? , ??? ????'? ?????? ????▴♱!!
?Francium.png?

!!? ⃟▬▬▭••????? ???? ?? ??? , ??? ????'? ?????? ????▴♱!!

           | ⚽?⚽|     

 

لینک به دیدگاه
به اشتراک گذاری در سایت های دیگر

??

!!? ⃟▬▬▭••????? ???? ?? ??? , ??? ????'? ?????? ????▴♱!!
?Francium.png?

!!? ⃟▬▬▭••????? ???? ?? ??? , ??? ????'? ?????? ????▴♱!!

           | ⚽?⚽|     

 

لینک به دیدگاه
به اشتراک گذاری در سایت های دیگر

به گفتگو بپیوندید

هم اکنون می توانید مطلب خود را ارسال نمایید و بعداً ثبت نام کنید. اگر حساب کاربری دارید، برای ارسال با حساب کاربری خود اکنون وارد شوید.
توجه: مطلب ارسالی شما پس از تایید مدیریت برای همه قابل رویت خواهد بود.

مهمان
ارسال پاسخ به این موضوع...

×   شما در حال چسباندن محتوایی با قالب بندی هستید.   بازگردانی قالب بندی

  تنها استفاده از 75 اموجی مجاز می باشد.

×   لینک شما به صورت اتوماتیک جای گذاری شد.   نمایش به صورت لینک

×   محتوای قبلی شما بازگردانی شد.   پاک کردن محتوای ویرایشگر

×   شما مستقیما نمی توانید تصویر خود را قرار دهید. یا آن را اینجا بارگذاری کنید یا از یک URL قرار دهید.

×
  • اضافه کردن...